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What does the hardware look like?

1. Reticular theory (up to 1900)

o «Protoplasmic reticulum»

Joseph von Gerlach Camillo Golgi
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What does the hardware look like?

1. Reticular theory (up to 1900)

o  «Protoplasmic reticulum»

2. Neuron doctrine

Neural units

Neurons are cells

Specialization

Nucleus is key

Nerve fibers are cell processes

Cell division

Nerve cells are connected by sites of contact
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Neurons = basic units of computation
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The Typical Cortical Neuron
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The Typical Cortical Neuron
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The synapse
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Brain = digital machine

1930-1950: birth of first computers

X/
L X4

Shannon: information theory of digital signals

K/
L X4

Turing : universal capabilities of digital
machines

< Von Neumann: architecture of universal
computers

Can we construct an electronic brain?
Birth of Artificial Intelligence

Alan Turing

John von Neumann



Revolution of psychology and Cognitive Science

“Symposium on Information Theory” MIT (September 11, 1956)

Experimental psychology + Information theory + theoretical linguistic

s G. Miller (1956) “The Magical Number Seven, Plus or Minus Two”

% N. Chomsky (1957) “Syntactic Structures”

s B.F. Skinner (1959) “Verbal Behavior”

% [IxoH MakkapTtu, MapsuH MuHckun, Annen Hetoann n 'epbept CanmoH



The Binary Neuron

X X X3 .0 X, Synaptic Inputs

Synaptic weights

@) Summation Z WETE
k=1
— N
Threshold
N
y Output y=H (Z WETE — b)
k=1

McCulloch and Pitts (1943)










Two synaptic inputs T = (5517 QUQ) w = (wy,ws)
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Three synaptic inputs T = (:L‘l, xo, 333) w = (wl, w2, wg)
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Three synaptic inputs T = (:Ijl, xo, 333) w = (wl, w2, wg)







—> Separates the space in two regions
) I







k=1
N synaptic inputs T = (331, ,:UN) W = (w1,
w.r—b=0 defines a hyperplane

—2» Separates the space in two regions
binary classifier




Binary classification task




Activity of neurons in MT
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-3 Can an upstream neuron read out the motion direction?




Neural readout of motion direction
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Binary neuron = linear classifier
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Need to adjust synaptic weights!!

-3 Learning = modification of synaptic weights




Learning in the Binary Neuron
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Learning in the Binary Neuron

given 6 X X3 E Synaptic Inputs

" Synaptic weights =3 adjust

@) Summation

Threshold

given @ Output

—2 synaptic plasticity underlies learning




Exemple: classify red points as 1 and blue points as 0
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Exemple: classify red points as 1 and blue points as 0

—> automatic rule for updating synaptic weights!?




The perceptron learning rule

Rosenblatt (1958)

Training set of p patterns: {(:L'(O), dop), (33(1), dy)... (:E(p), dy)}

where ;I;(k) is an input vector
d. =0 or 1 is a desired output




The perceptron learning rule

Rosenblatt (1958)
Training set of p patterns: {(x(o), dop), (33(1), dy)... (:B(p), dy)}

where g;(k) is an input vector
d. =0 or 1 is a desired output

On every step:
for each pattern k

N
k
|. compute the output Y = H(Z wzxg ))
1=1
2.if Y # di update the weights:

wi(t + 1) = w;(t) + (dg — yg)z

—>» Converges in a finite number of steps if a solution exists




The perceptron learning rule

Aim: classify red points as | and blue points as 0




The perceptron learning rule

Start with a random set of synaptic weights
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The perceptron learning rule

Choose a misclassified pattern

¢ o
® o ®
®

o
. e

w

®

® ®




The perceptron learning rule

Choose a misclassified pattern
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The perceptron learning rule

Update weight vector w=w + f(
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The perceptron learning rule
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The perceptron learning rule

Update weight vector w=w + f(l)




The perceptron learning rule

Update weight vector




The perceptron learning rule

Choose next misclassified pattern




The perceptron learning rule

Choose next misclassified pattern




The perceptron learning rule

Update weight vector w = w + f(Q)

1w




The perceptron learning rule

Correct classification: learning terminates




What can a perceptron do?

Rosenblatt: « The perceptron may eventually be able to learn, make decisions,
and translate languages »
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What can a perceptron do?

Rosenblatt: « The perceptron may eventually be able to learn, make decisions,
and translate languages »

Exemple: train neurons to recognize
hand-written digits

Train ten binary neurons

Inputs: vector of pixel values
corresponding to digits

Neuron 3: output = | if input is the digit 3
output = 0 otherwise
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A binary neuron can only implement linearly
separable functions

Two sets are linearly separable if there exists a hyperplane separating them

Minsky and Pappert, Perceptrons (1969)




A binary neuron can only implement linearly
separable functions

Marvin Minsky and Seymour Papert
Perceptrons (1969)

—> Al winter: halt in research and funding during 10
years




Neuron model example
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Neuron model decision boundary
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Neuron model decision boundary
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Neuron model decision boundary
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Example when it fails

What if we want separate them?
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Multilayer network: hierarchical decision boundary
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Multilayer network: hierarchical decision boundary
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Problem fixed! o] . 10
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What can binary neurons compute!

Y

—> Single binary neurons can compute only linearly
separable functions
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What can feedforward networks compute!?

v

Y2

Slide 68 of 126




What can feedforward networks compute!?

R

v Y

Y

—> Single layer networks can compute only linearly
separable functions
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What can multilayer feedforward
networks compute!

X, Input

R

X,
‘ ‘ ‘ Hidden units

Sl

Y Y

Output
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Multilayer networks can compute
any binary function!

Any binary function f ; {(), 1}” N {O, 1}
can be represented using only ANDs and ORs

[disjunctive normal form and conjunctive normal form]

—> Multilayer networks have universal computational
properties

Slide 71 of 126




Multilayer networks can compute
any binary function!

Any binary function f ; {(), 1}” N {O, 1}
can be represented using only ANDs and ORs

[disjunctive normal form and conjunctive normal form]

—> Multilayer networks have universal computational
properties

.. DUt how to train them?
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Training multilayer networks

Set of p training patterns {(x(o), do), (iC(l), dl) e (x(p)7 dp)}

p
Aim: minimize cost function E — Z Hyk . dkHQ
k=1

by changing the synaptic weights in the network

—>» Backpropagation algorithm (Rumelhart, Hinton and Williams 1986)

David Rumelhart Geoff Hinton

Slide 73 of




Backpropagation

e Renaissance of Artificial Neural Networks since the 80’s,
but...

* Backpropagation suggests a retrograde propagation
along axons and synapses and would require “precise
error signals that are different for each neuron, which are
not accepted as likely candidates for learning processes
In the brain” (Mazzoni et al. 1991)

* |In other words:
== Not compatible with biology
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Hebb’s postulate

When an axon of cell A is near enough to excite cell B

and repeatedly or persistently takes part in firing it,

some growth process or metabolic change takes place in

"1 one or both cells such that A’s efficiency, as one of the
' cells firing B, is increased. (1949)

Donald Hebb

Oan0

If A and B are active at the same time, w4_,p increases.
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The perceptron learning rule

Rosenblatt (1958)
Training set of p patterns: {(x(o), dop), (I(l), dy)... (:E(p), dy)}

where g;(k) is an input vector
d. =0 or 1 is a desired output

On every step:
for each pattern k

N
k
|. compute the output yr = H( g wzajf’ ))
1=1

2.if Yy 7 dj update the weights:

w;i(t+ 1) = w;(t) + (dp — yk)a:,fk)

input x output

—3 hebbian learning
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So far: feedforward networks

X%MX\ InPUt
‘ Hidden units

‘ ‘ Output

Y Y
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More general: recurrent connections

X%MX\ InPUt
‘ Hidden units

‘ ‘ Output

Yi Y2
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More general: recurrent connections

X%Mxn\ "
‘ Hidden units

. ‘
<

‘ ‘ Output

Yi Y2
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More general: recurrent connections

X X X3 ... X, Input

(O
S
50

Output

Yi Y2
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Recurrent networks: need to look at the
dynamics!

X X X3 ... X, Input

(O
S
50

Output

Y Y
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Recurrent networks: need to look at the
dynamics!

X X X3 ... XN External Inputs

oRyoRye
‘\(‘
OO

Y Y2 Y3 -o- YN Activities
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Network dynamics in discrete time

Network of N units




Network dynamics in discrete time

Network of N units

Activity of neuron |
at next timestep
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Network dynamics in discrete time

Network of N units

N
yi(t +1) = H[ Y wijy; (1) + 2(t)
J=1
Activity of neuron | Total input External input
at next timestep from network

at present timestep

Slide 85 of 126




Network dynamics in discrete time

Network of N units

N
yi(t +1) = H[ Y wijy;(t) + 24(t)
’ j: ]
Activity of neuron | | Total input External input
at next timestep X from network

at present timestep
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Network dynamics in discrete time

Network of N units

N
yi(t +1) = H[ Y wijy;(t) + 24(t)
’ j: ]
Activity of neuron | | Total input External input
at next timestep X from network

at present timestep

ti
Change of notations: Y; = { 1 actve

—1 inactive

Hlz] = sgn|x]

Slide 87 of 12




Example

Network of N = 3 units

activity: y(t) = (y1(t), y2(t), y3(t))

(wn w12 w13\

synaptic matrix: W = W21 W29 W93

\w31 W32 W33 /

dynamics: y(t + 1) = sgn [W.y(t)]
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Example

Network of N = 3 units

initial condition: y(t=1)=(1,1,1)

synaptic matrix: W = -1 1 -1

dynamics: y(t + 1) = sgn [W.y(t)]
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Dynamics - first time step

y(t + 1) = sgn [W.y(t),

Slide 90 of 126




Dynamics - first time step

(1 =1 1\ (1) [ 1)
\ 1 -1 1 )\t ) 1)




Dynamics - first time step

(1 -1 1\ 1) [ 1)
\ 1 -1 1 \1) 1

y(2)=sgn| -1 | =] -1




Dynamics - second time step




Dynamics - second time step




Dynamics - second time step

j3)=sgn| -1 | =| -1 | =4(2)!
\ 1t/ \ 1

—> the activity does not eyglve anymore = fixed point




Fixed points of network dynamics

External input only on first step = set initial conditions

Dynamics stop when

yi(t +1) = y;(t)
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Fixed points of network dynamics

External input only on first step = set initial conditions

Dynamics stop when

yi(t+1) = y;(t)

N
Yi = sgn Zwijyj
j=1

—> fixed point = output of the network

Slide 97 of 126




Start from different initial conditon

Network of N = 3 units

initial condition:

synaptic matrix:

dynamics:

y(t + 1) = sgn [W.y(t)]
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Dynamics - first time step

y(t + 1) = sgn [W.y(t),

[ 1
W.gl) = | —1
\ 1
y(2) = sgn

—1

1

I -1

—1

(1)

1

1

L)

(1)

—1

\ 1)

[ 1)

—1

\ 1)

-—P» same fixed |:S>1%>i9r91t:f!126




Attractors

Given an input (=initial condition),
the network dynamics will evolve to the closest fixed point.
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Attractors

Given an input (=initial condition),
the network dynamics will evolve to the closest fixed point.

Different initial conditions can lead to the same fixed point.
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Attractors

Given an input (=initial condition),
the network dynamics will evolve to the closest fixed point.

Different initial conditions can lead to the same fixed point.

—> fixed points = attractors for the dynamics
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Attractors

Given an input (=initial condition),
the network dynamics will evolve to the closest fixed point.

Different initial conditions can lead to the same fixed point.

—> fixed points = attractors for the dynamics

attractor neural networks:
store patterns as fixed points = memories
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Attractors

Given an input (=initial condition),
the network dynamics will evolve to the closest fixed point.

Different initial conditions can lead to the same fixed point.

—> fixed points = attractors for the dynamics

attractor neural networks:
store patterns as fixed points = memories

Fixed points depend on synaptic weights.

how to set weights to encode desired patterns?

Slide 104 of 126




Hopfield learning rule for recurrent networks

Set of p desired outcomes: {6(1) ’ 5(2) . é’(p)}

Set weights to (Hopfield 1982):

1 p
wij =~ > & &
k=1

John Hopfield

Pseudo-hebbian rule
Symmetric connections: the network possesses an energy function
Network dynamics minimize the energy function

—> Stored patterns are located at the minima of the
energy function

Slide 105 of 126




Exemple: network of n=100 neurons

Every box represents a neuron Y1|Y9

All neurons are interconnected Y11Y10

Yi

1 Black
— White

Y10
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Exemple of learning in a recurrent network

Desired ouput 5(1) .

Synaptic weights:
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Exemple of learning in a recurrent network
w =1

Desired ouput 5(1) .

Synaptic weights:
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Exemple of learning in a recurrent network
w =1

Desired ouput 5(1) .

Synaptic weights:
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Exemple of learning in a recurrent network

w=—1

Desired ouput 5(1) . 6_\

Synaptic weights:

1
Wij = N§7;(1)§§1)
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¢Wis a fixed point of the dynamics

Fixed point equation:

Yi = Sgﬂ[z wijy; (1))

with:

1
Wij = Nfi(l)f;l)
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¢Wis a fixed point of the dynamics

Fixed point equation: N
n Yi = & — sgn( S wié;)
(VY
7=1

with:

1
Wij = N§7;(1)§§1)
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¢Wis a fixed point of the dynamics

Fixed point equation:

: =Gy —sen( )
yi = sgn[y _ wijy; (b)) e Z:I
=1 '




¢Wis a fixed point of the dynamics

Fixed point equation:

n Yi — gz = sgn szjfj
g = sen>wiyy(t) —
j=1

= sgn Z ik §J

= sgn £z 26,7{7




¢Wis a fixed point of the dynamics

Fixed point equation:

N
n Yi — fz — sgn( wz’jfj)
i = seal w0 — -
J=1 ;

J:
N
" = sgn( ) 6;5.] &)
(S S
o i€(1)€(1) sgn(N jzzlﬁyﬁa)
Nt I §i
= sgn(NN)




¢Wis a fixed point of the dynamics

Fixed point equation:

3)

Mz.

Yi = & - sgn(

Yi = Sgn[z Wi Y; (L)) e

1

>l

= Sgn(z ;éj ¢5)

é_ N
= Sgn —1 Zﬁ;fy
_ Lo o
= sgn
= sgn(&;)
— §i

2

2|




Exemple of learning in a recurrent network

initial fixed
condition point

—>3 Pattern is stored in the network
and recovered from suitable initial conditions
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Content-addressable,
associative memory




Content-addressable,
associative memory




Inverse pattern is stored too!
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Storing two patterns

£ ;i

551)5( ) +m( )77]( )
N
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Storing multiple patterns

An schematic of a network with 4 attractors:
(a) (b)

1 m'’ =1

Fig. 17.9 Attractor picture and energy landscape. (a) The dynamics are attracted toward fixed points
corresponding to memory states (overlap m" = 1). Four attractor states are indicated. The dashed
lines show the boundaries of the basin of attraction of each memory. (b) The Hopfield model has
multiple equivalent energy minima, each one corresponding to the retrieval (overlap m" = 1) of one
pattern. Between the main minima, additional local minima (corresponding to mixtures of several
patterns) may also exist.

Figure from Gersiner et al. (2014)



Another source for Hopfield networks

A nice tutorial related to Hopfield networks:

https://towardsdatascience.com/hopfield-networks-are-us
eless-heres-why-you-should-learn-them-f0930ebeadcd

(Last accessed on 25/04/2022)

There Is a very nice example of de-noising using a
Hopfield network with three attractors:

lteration 0 lteration 1 Iteration 2 lteration 3 lteration 4 lteration 5

Iteration & Iteration 7 Iteration 8
r%et enargy: -52?4]’%@:. enargy: -903&%5. enargy:

-lﬂﬁdmuéﬂ enargy: -1112B§?energy: -11313?9 enargy: -1138&1:6!15 enargy: -114053&9 enargy: -1142&16&1 enaergy: -11427.02

Tl cawped e el wod{. © . 1po{ 100 - 100 -

50

100 53

o 50 100 o 50 100 o 50 100 o 50 100 o 50 100 0 50 100 0 50 100 0 50 100 0 50 100
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Binary neurons and networks: summary

- Binary neurons act as binary linear classifiers
- Learning rules can be used to train the neurons to produce the
desired output

- Single layer feedforward networks can compute linearly
separable operations [PERCEPTRON — HEBBIAN learning rule]

- Multilayer feedforward networks can compute any binary
function

- Recurrent networks can memorize and recall patterns
[ATTRACTOR networks]
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Outlook

BINARY NEURONS AND

NETWORKS
ARTIFICIAL NEURAL NEUROSCIENCE
NETWORKS
aim: understand how the brain
aim: solve machine-learning works
problems
—> inspired by biology —> constrained by

Slide 125 of 126 biOIo
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The Hodgkin Huxley model
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Outline

1. Neural electricity

a. The resting potential

b. The action potential

c. Electrodiffusion and the Nerst potential
d. The membrane equation

2. The Hodgkin Huxley model
3. Synapses



Neurons = basic units of computation
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The synapse
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The action potential
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Initial state of neurons (=up to 3 months of the embryonic development): V___ =
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1. K'-channels genes turns on:




K+-channels genes and ion-current equilibrium
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The resting potential
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Initial state of neurons (=up to 3 months of the embryonic development): V___ =

e Positively charged ions: K" 1 Na*
e Negatively charged ions: CI7, -PO,~, some aminoacids

+ . z =ion valency
1. K'-channels genes turns on: B = RT fi [Ion]out R = universal gas constant (8, 315 mJ/(Ke-Mol)
mon

. T = temperature (in degrees Kelvin)
zF [IOH]m F = Faraday’s constant (96,48 coulombs/Mol

2. Na'-channels genes turns on: sodium enters the cell

*

varies in cells,
. channels . .
ifalot =1V __I | = the neuron is more excitable
(more sensitive)

3. Na'-K'-ATPase performs the process reverse to 1-2.
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The action potential
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The action potential
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The action potential

At rest, the neuron is polarised: Vm =-70 mV

Terminology:
e depolarised: V_increases
e hyperpolarised: V _ decreases

EK < ECI < V( < ENa < ECa

at rest)

Equilibrium Potentials

Nat  62logi® = 90 mV
62log 42 = 61 mV
K* 62 log 1——1’—0 = —90 mV

—

ClI™ —62log # = —89 mV

Ca*t 3llog 22 = 136 mV

31llog 5=r = 146 mV



The action potential

apical dendrites

>
l recording € e
electrode T spike
=
L
S 40 ms
()
=
©
0
= -60 mV
basal dendrites time, ms
I SRREEEEEEE
axon




Electrical activity in vitro

__Jomv Membrane potential
200 ms

Injected current




The action potential

The action potential is a reply on a stimultation of a neuron



The action potential

The action potential is a reply on a stimultation of a neuron

1.  Stimulation



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation
2. Depolarization phase:



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation
2. Depolarization phase:
a. Voltage-gated Na‘-channels open



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation

2. Depolarization phase:
a. Voltage-gated Na‘-channels open
b. Na'-ions flood in the cell



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation

2. Depolarlzatlon phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na‘-channels open Na+-channels open when V> -50 mV
b. Na'-ions flood in the cell



Na‘-channels

I Voltage-Gated Sodium Channel

)

Plasma

membrane

Activation
gate

At resting potential

(=70 mV)

Extracellular

fluid (ECF)

Intracellular
fluid (ICF)

@ BrooksiCole - Thomson Learning

Rapid Slow
opening closing
triggered triggered

at threshold at threshold

From threshold to peak potential From peak to resting potential
(=50 mV to +30 mV)

(+30 mV to =70 mV)



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation

2. Depolarlzatlon phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na‘-channels open Na+-channels open when V> -50 mV
b. Na'-ions flood in the cell



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation

2. Depolarlzatlon phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na‘-channels open Na+-channels open when V> -50 mV
b. Na'-ions flood in the cell

3. Repolarization phase:



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation

2. Depolarization phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na‘-channels open Na+-channels open when V> -50 mV
b. Na'-ions flood in the cell

3. Repolarization phase:
a. \oltage-gated Na+-channels close



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation

2. Depolarization phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na‘-channels open Na+-channels open when V> -50 mV
b. Na'-ions flood in the cell

3. Repolarization phase:
a. \oltage-gated Na+-channels close
b. Voltage-gated K'-channels open



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation

2' Depolarization phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na‘-channels open Na+-channels open when V> -50 mV
b. Na'-ions flood in the cell

3. Repolarization phase:
a. Voltage-gated Na+-channels close
b. Voltage-gated K'-channels open
c. K'-ions flood out of the cell



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation
2- Depolarlzatlon phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na"™-channels open Nat-channels open when V> -50 mv

b. Na'-ions flood in the cell

3' RepOIarlzatlon phase: Na‘-channels close after 0.5 ms
a. \oltage-gated Na+-channels close K'-channels are slow
K*-channels open after 0.5 ms

b. Voltage-gated K'-channels open
c. K'-ions flood out of the cell



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation
2- Depolarlzatlon phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na"™-channels open Nat-channels open when V> -50 mv

b. Na'-ions flood in the cell

3' RepOIarlzatlon phase: Na‘-channels close after 0.5 ms
a. \oltage-gated Na+-channels close K'-channels are slow
K*-channels open after 0.5 ms

b. Voltage-gated K'-channels open
c. K'-ions flood out of the cell
4. Hyperpolarization phase



The action potential

The action potential is a reply on a stimultation of a neuron

1. Stimulation
2- Depolarlzatlon phase: Na+-channels are ionotropic and fast
a. Voltage-gated Na"™-channels open Nat-channels open when V> -50 mv

b. Na'-ions flood in the cell

3' RepOIarlzatlon phase: Na‘-channels close after 0.5 ms
a. \oltage-gated Na+-channels close K'-channels are slow
K*-c