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Brain = digital machine

1930-1950: birth of first computers

❖ Shannon: information theory of digital signals

❖ Turing : universal capabilities of digital 
machines

❖ Von Neumann: architecture of universal 
computers

Can we construct an electronic brain? 
Birth of Artificial Intelligence



Revolution of psychology and Cognitive Science

“Symposium on Information Theory” MIT (September 11, 1956)

Experimental psychology + Information theory + theoretical linguistic 

❖ G. Miller (1956) “The Magical Number Seven, Plus or Minus Two” 
❖ N. Chomsky (1957) “Syntactic Structures” 
❖ B.F. Skinner (1959) “Verbal Behavior” 
❖ Джон Маккарти, Марвин Мински, Аллен Ньюэлл и Герберт Саймон 
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Binary classification task
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Activity of neurons in MT

Can)an)upstream)neuron)read)out)the)mo;on)direc;on?
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Binary neuron = linear classifier

Learning)=)modifica;on)of)synap;c)weights

Need)to)adjust)synap;c)weights!!
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Learning in the Binary Neuron

x1 x2 x3 … xn

w1 w2 w3 wn

Synaptic Inputs

Synaptic weights

Outputy

Summation

Threshold

given

given

adjust

synaptic plasticity underlies learning
Tuesday, April 1, 14
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Exemple:)classify)red)points)as)1)and)blue)points)as)0

automatic rule for updating synaptic weights?
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Rosenblatt (1958)

Training set of p patterns:

                                     where                          ! ! is an input vector
                                                                          ! ! is a desired output

! !

The perceptron learning rule
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Rosenblatt (1958)

Training set of p patterns:

                                     where                          ! ! is an input vector
                                                                          ! ! is a desired output

On every step:
! for each pattern  

! ! 1. compute the output

! ! 2. if                      update the weights:
! !

Converges in a finite number of steps if a solution exists

The perceptron learning rule
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The perceptron learning rule

Aim: classify red points as 1 and blue points as 0

Tuesday, April 1, 14



The perceptron learning rule

Start with a random set of synaptic weights
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The perceptron learning rule

Choose a misclassified pattern
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The perceptron learning rule

Update weight vector
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The perceptron learning rule
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The perceptron learning rule

Update weight vector
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The perceptron learning rule

Correct classification: learning terminates

Tuesday, April 1, 14



What)can)a)perceptron)do?

Rosenblatt: « The perceptron may eventually be able to learn, make decisions, 
! ! ! and translate languages »
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What)can)a)perceptron)do?

Rosenblatt: « The perceptron may eventually be able to learn, make decisions, 
! ! ! and translate languages »

Exemple: train neurons to recognize 
! ! hand-written digits

Train ten binary neurons

Inputs: vector of pixel values 
             corresponding to digits

Neuron 3: output = 1 if input is the digit 3
! !  output = 0 otherwise

Tuesday, April 1, 14



The perceptron

Frank)Rosenbla/
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A binary neuron can only implement linearly 
separable functions

Minsky and Pappert, Perceptrons (1969)

Two sets are linearly separable if there exists a hyperplane separating them

Tuesday, April 1, 14



A binary neuron can only implement linearly 
separable functions

AI winter: halt in research and funding during 10 
years

Marvin Minsky and Seymour Papert
Perceptrons (1969) 
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Neuron model example

-bias

Credit: http://www.ccas.ru/voron



Neuron model decision boundary

Credit: http://www.ccas.ru/voron
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Neuron model decision boundary

Credit: http://www.ccas.ru/voron

How to make AND?



Example when it fails
What if we want separate them?

XOR

Credit: http://www.ccas.ru/voron



Multilayer network: hierarchical decision boundary

Credit: http://www.ccas.ru/voron



Multilayer network: hierarchical decision boundary

Credit: http://www.ccas.ru/voron



Problem fixed!

Credit: http://www.ccas.ru/voron



What can binary neurons compute?

x1 x2 x3 …    xn

Single binary neurons can compute only linearly 
separable functions

y1
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What can feedforward networks compute?

x1 x2 x3 …    xn

y1 y2

Single layer networks can compute only linearly 
separable functions

…              yn
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What can multilayer feedforward 
networks compute?

x1 x2 x3 …    xn

y1 y2

Input

Output

Hidden units

Tuesday, April 1, 14
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Multilayer networks can compute 
any binary function!

Any binary function

can be represented using only ANDs and ORs

[disjunctive normal form and conjunctive normal form]

Multilayer networks have universal computational 
properties
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Multilayer networks can compute 
any binary function!

Any binary function

can be represented using only ANDs and ORs

[disjunctive normal form and conjunctive normal form]

Multilayer networks have universal computational 
properties

... but how to train them?

Tuesday, April 1, 14
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Training multilayer networks

Set of p training patterns

Aim: minimize cost function

by changing the synaptic weights in the network

Backpropagation algorithm (Rumelhart, Hinton and Williams 1986)

David Rumelhart Geoff Hinton

Tuesday, April 1, 14
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Backpropagation

● Renaissance of Artificial Neural Networks since the 80’s, 
but…

● Backpropagation suggests a retrograde propagation 
along axons and synapses and would require “precise 
error signals that are different for each neuron, which are 
not accepted as likely candidates for learning processes 
in the brain” (Mazzoni et al. 1991)

● In other words:
Not compatible with biology

Slide 74 of 126



Hebb’s postulate

Donald Hebb

When an axon of cell A is near enough to excite cell B 
and repeatedly or persistently takes part in firing it, 
some growth process or metabolic change takes place in 
one or both cells such that A's efficiency, as one of the 
cells firing B, is increased. (1949)

A B

If A and B are active at the same time,                    increases. 

 

Tuesday, April 1, 14
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Rosenblatt (1958)

Training set of p patterns:

                                     where                          ! ! is an input vector
                                                                          ! ! is a desired output

On every step:
! for each pattern  

! ! 1. compute the output

! ! 2. if                      update the weights:
! !

The perceptron learning rule

input/x/output//

hebbian/learning
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So far: feedforward networks

y1 y2

Input

Output

Hidden units

x1 x2 x3 …    xn
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More general: recurrent connections

y1 y2
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More general: recurrent connections

y1 y2
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Recurrent networks: need to look at the 
dynamics!

y1 y2

Input

Output

Hidden units

x1 x2 x3 …    xn
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Recurrent networks: need to look at the 
dynamics!

External Inputs

Activities

x1 x2 x3 …    xN

y1 y2

yN

y1 y2 y3 …    yN
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Network dynamics in discrete time

Network of N units

Tuesday, April 1, 14
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Network dynamics in discrete time

Ac;vity)of)neuron)I
at)next);mestep

Network of N units
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Network dynamics in discrete time

Ac;vity)of)neuron)I
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Total)input
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External)input

Network of N units
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Network dynamics in discrete time

Ac;vity)of)neuron)I
at)next);mestep

Total)input
from)network
at)present);mestep

External)input1

Change)of)nota;ons: ac;ve

inac;ve

Network of N units

1

-1
Tuesday, April 1, 14
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~y(t+ 1) = sgn [W.~y(t)]

95

Example

Network of N = 3 units

activity:

synaptic matrix:

dynamics:
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~y(t+ 1) = sgn [W.~y(t)]

~y(t = 1) = (1, 1, 1)

W =

0

BB@

1 �1 1

�1 1 �1

1 �1 1

1

CCA
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Example

Network of N = 3 units

initial condition:

synaptic matrix:

dynamics:
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~y(t+ 1) = sgn [W.~y(t)]

97

Dynamics - first time step
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Dynamics - first time step
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Dynamics - first time step
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Dynamics - second time step
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Dynamics - second time step
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~y(t+ 1) = sgn [W.~y(t)]
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Dynamics - second time step

the activity does not evolve anymore = fixed point
Tuesday, April 1, 14
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Fixed points of network dynamics

External input only on first step = set initial conditions

Dynamics stop when

yi(t+ 1) = yi(t)

Tuesday, April 1, 14
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yi = sgn

0

@
NX

j=1

wijyj

1

A

Fixed points of network dynamics

External input only on first step = set initial conditions

Dynamics stop when

fixed point = output of the network

yi(t+ 1) = yi(t)
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~y(t+ 1) = sgn [W.~y(t)]

W =

0

BB@

1 �1 1

�1 1 �1

1 �1 1

1

CCA

~y(t = 1) = (1,�1,�1)

105

Start from different initial conditon

Network of N = 3 units

initial condition:

synaptic matrix:

dynamics:
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Dynamics - first time step

same fixed point!
Tuesday, April 1, 14
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Given an input (=initial condition), 
the network dynamics will evolve to the closest fixed point.

Attractors
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Given an input (=initial condition), 
the network dynamics will evolve to the closest fixed point.

Different initial conditions can lead to the same fixed point.

fixed points = attractors for the dynamics

Attractors
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Attractors

Given an input (=initial condition), 
the network dynamics will evolve to the closest fixed point.

Different initial conditions can lead to the same fixed point.

fixed points = attractors for the dynamics

attractor neural networks: 
store patterns as fixed points = memories
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Given an input (=initial condition), 
the network dynamics will evolve to the closest fixed point.

Different initial conditions can lead to the same fixed point.

fixed points = attractors for the dynamics

attractor neural networks: 
store patterns as fixed points = memories

Fixed points depend on synaptic weights.

how to set weights to encode desired patterns?

Attractors
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Hopfield learning rule for recurrent networks

Set of p desired outcomes: 

 

Pseudo-hebbian rule
Symmetric connections: the network possesses an energy function
Network dynamics minimize the energy function

Stored patterns are located at the minima of the 
energy function

Set weights to (Hopfield 1982):

John Hopfield

wij =
1

N

pX

k=1

⇠(k)i ⇠(k)j
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Exemple: network of n=100 neurons

Every box represents a neuron

All neurons are interconnected

Black

White

Tuesday, April 1, 14
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wij =
1

N
⇠(1)i ⇠(1)j

Exemple of learning in a recurrent network

Desired ouput

Synaptic weights:
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wij =
1

N
⇠(1)i ⇠(1)j

Desired ouput

Synaptic weights:

w = 1
Exemple of learning in a recurrent network
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wij =
1

N
⇠(1)i ⇠(1)j

w = 1

Exemple of learning in a recurrent network

Desired ouput

Synaptic weights:
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wij =
1

N
⇠(1)i ⇠(1)j

w = �1

Exemple of learning in a recurrent network

Desired ouput

Synaptic weights:
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 is a fixed point of the dynamics

Fixed point equation:

with:

wij =
1

N
⇠(1)i ⇠(1)j
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Exemple of learning in a recurrent network

Pattern is stored in the network
and recovered from suitable initial conditions
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Inverse pattern is stored too!
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wij =
⇠(1)i ⇠(1)j + ⌘(1)i ⌘(1)j

N

Storing two patterns
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Storing multiple patterns

An schematic of a network with 4 attractors:

Figure from Gerstner et al. (2014)
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Another source for Hopfield networks

A nice tutorial related to Hopfield networks:

https://towardsdatascience.com/hopfield-networks-are-us
eless-heres-why-you-should-learn-them-f0930ebeadcd
 (Last accessed on 25/04/2022)

There is a very nice example of de-noising using a 
Hopfield network with three attractors:
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Binary neurons and networks: summary

_ Binary neurons act as binary linear classifiers
_ Learning rules can be used to train the neurons to produce the 

desired output
_ Single layer feedforward networks can compute linearly 

separable operations [PERCEPTRON – HEBBIAN learning rule]

_ Multilayer feedforward networks can compute any binary 
function

_ Recurrent networks can memorize and recall patterns 
[ATTRACTOR networks]

Tuesday, April 1, 14
Slide 124 of 126



Outlook

ARTIFICIAL NEURAL 
NETWORKS

aim: solve machine-learning 
problems

NEUROSCIENCE

aim: understand how the brain 
works

BINARY NEURONS AND 
NETWORKS

inspired by biology constrained by 
biology
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The Hodgkin Huxley model
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Outline

1. Neural electricity
a. The resting potential
b. The action potential
c. Electrodiffusion and the Nerst potential
d. The membrane equation

2. The Hodgkin Huxley model 
3. Synapses



Neurons = basic units of computation



The Typical Cortical Neuron



The action potential
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Initial state of neurons (≈ up to 3 months of the embryonic development): Vrest = 0

● Positively charged ions: K+ и Na+ 
● Negatively charged ions: Cl–, -PO4

–, some aminoacids

1. K+-channels genes turns on: 

2. Na+-channels genes turns on: sodium enters the cell

3. Na+-K+-ATPase performs the process reverse to 1-2.

z = ion valency
R = universal gas constant (8, 315 mJ/(K◦·Mol)
T = temperature (in degrees Kelvin)
F = Faraday’s constant (96,48 coulombs/Mol

#channels varies in cells, 
if a lot ⇒ |Vrest| ↓ ⇒ the neuron is more excitable  

(more sensitive)
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Electrical activity in vitro
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How does a neuron process spike trains?
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Conductances

Ionic channels are large transmembrane proteins having aqueous pores through which ions can flow down 
their electrochemical gradients. The electrical conductance of individual channels may be controlled by 
gating particles (gates), which switch the channels between open and closed states. 

The gates may be sensitive to the following factors:

● Membrane potential. 
○ Example: voltage-gated Na+ or K+ channels

● Intracellular agents (second-messengers). 
○ Example: Ca2+-gated K+ channels

● Extracellular agents (neurotransmitters and neuromodulators). 
○ Example: AMPAR, NMDAR, GABAR
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Dynamics of Ion Channel State

➔ 0 < m < 1 partially activated
➔ m = 1 completely activated
➔ m = 0 not activated or deactivated 
➔ h = 0 inactivated
➔ h = 1 released from inactivation or deinactivated 
➔ b = 0 channels do not have inactivation gates 

g = maximal conductance 
E = the reverse potential of the current
p = the average proportion of channels in the 
open state

m = the probability of an activation
h = the probability of an inactivation
a =  the number of activation gates
b =  the number of inactivation gates
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The refractory period

Just after a spike, it is harder to trigger another one.

Two causes:

● Inactivation of sodium channels (fast):  
○ absolute refractory period (impossible to spike)

● Opening of potassium channels (slower): 
○ relative refractory period (harder to spike)

In contrast to the integrate-and-fire models we don’t need to tweak the model to 
account for refractoriness
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The need for stochasticity

❖ Neurons receive input from 
several presynaptic neurons

❖ Neurons have an spontaneous 
activity

Let’s see how the HH model 
behaves to a stochastic input current
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Response to a noisy long pulse («retest»)

Injected current pulse of 50 ms at t = 1 ms, I0=100 uA
Same pulse as in the deterministic 
simulation but adding a Gaussian noise 
with standard deviation of 10 uA
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Propagation of the Action Potentials

1. Excitation in some region → membrane depolarization V0 + dV
2. Under the potential difference between the region of excitation and the 

neighboring area, in the axoplasm a current ia flows
3. It leads to decreasing of membrane potential for dV
4. If polarization is enough for threshold → excitation
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Framework for biophysical neuron models

In fact, we have more than just sodium and potassium channels:

m and h describe activation and inactivation of the 
channel, 
pk and qk are empirical parameters, 
Ek is the reversal potential,
gk is the maximum conductance which may depend on 
secondary variables such as the concentration of 
calcium, magnesium, dopamine or other substances

It is possible to classify an ion channel using 

● its genetic sequence; 
● the ion type (sodium, potassium, calcium …) that can pass through the open channel; 
● its voltage dependence; 
● its sensitivity to second-messengers such as intra-cellular calcium; 
● its presumed functional role;
● its response to pharmacological drugs or to neuromodulators such as acetylcholine and dopamine.
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Morris, C. and Lecar, H. (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35: 193 - 213.
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Morris-Lecar model

Balanus nubilus 

     Catherine Morris              Harold Lecar

Morris, C. and Lecar, H. (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35: 193 - 213.



● The two-dimensional model can be analyzed using phase-plane 
methods

● Morris–Lecar neurons exhibit both class I and class II of excitability
● The Morris-Lecar equations are particularly useful for modelling 

fast-spiking neurons, such as the pyramidal neurons of the neocortex
● A model employing Morris-Lecar oscillators of different frequencies 

has been used to explain quite complex bursting phenomena of 
coupled neurons

Morris-Lecar model

Balanus nubilus 

     Catherine Morris              Harold Lecar

Morris, C. and Lecar, H. (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35: 193 - 213.
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● u is the instantaneous membrane potential
● urest the resting potential (in the absence of any input) 
● I(t) is an injected current
● u(t) −> urest 

A neuron is surrounded by a cell membrane, which is a rather 
good insulator. If a short current pulse I(t) is injected into the 
neuron, the additional electrical charge 

q=∫I(t)dt 

will charge the cell membrane. 

The cell membrane acts like a capacitor. This insulator is not 
perfect, the charge will, over time, slowly leak through the cell 
membrane. The cell membrane can therefore be characterized 
by a finite leak resistance R.
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Leaky integrate-and-fire model

The simplest electrical circuit consists of a capacitor C 
in parallel with a resistor R driven by a current I(t):

the resistive current which passes 
through the linear resistor R. Ohm’s law 
as IR=uR/R where uR = u − urest is the 
voltage across the resistor

charges the capacitor C. From the 
definition C = q / u a capacitive 
current IC = dq / dt = C du / dt. 

u is the membrane potential
τm is the membrane time constant 
R is the resistance
I(t) is an external current
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Response to a current step. In A - C, the current is switched on at t=t0 to a value I2>0. 
Fast-spiking neurons (A) have short interspike intervals without adaptation while 
regular-spiking neurons (C) exhibit adaptation, visible as an increase in the duration of 
interspike intervals. An example of a stuttering neuron is shown in B. Many neurons emit 
an inhibitory rebound spike (D) after an inhibitory current I1 < 0 is switched off. Data [1-2]
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Fast-spiking neurons (A) have short interspike intervals without adaptation while 
regular-spiking neurons (C) exhibit adaptation, visible as an increase in the duration of 
interspike intervals. An example of a stuttering neuron is shown in B. Many neurons emit 
an inhibitory rebound spike (D) after an inhibitory current I1 < 0 is switched off. Data [1-2]

[1] H. Markram, M. Toledo-Rodrgiguez, Y. Wang, A. Gupta, G. 
Silberberg and C. Wu (2004) Interneurons of the neocortical 
inhibitory system. Nature Review Neuroscienc 5, pp. 793–807. 

[2] M. Toledo-Rodriguez, B. Blumenfeld, C. Wu, J. Luo, B. Attali, 
P. Goodman and H. Markram (2004) Correlation maps allow 
neuronal electrical properties to be predicted from single-cell 
gene expression profiles in rat neocortex. Cerebral Cortex 14, 
pp. 1310–1327. 
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T. K. Berger, R. Perin, G. Silberberg and H. Markram (2009) 
Frequency-dependent disynaptic inhibition in the pyramidal 
network: a ubiquitous pathway in the developing rat neocortex. 
The Journal of Physiology 587 (22), pp. 5411–5425.
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Limitations of the Leaky Integrate-and-Fire Model

   3.     Spatial Structure

The form of postsynaptic potentials also depends on the location of the synapse on the 
dendritic tree. Synapses that are located far away from the soma are expected to evoke 
a smaller postsynaptic response at the soma than a synapse that is located directly on 
the soma. If several inputs occur on the same dendritic branch within a few milliseconds, 
the first input will cause local changes of the membrane potential that influence the 
amplitude of the response to the input spikes that arrive slightly later. This may lead to 
saturation or, in the case of so-called ‘active’ currents, to an enhancement of the 
response. Such nonlinear interactions between different presynaptic spikes are 
neglected in the leaky integrate-and-fire model. Whereas a purely linear dendrite can be 
incorporated in the ‘filter’ description of the model, nonlinear interactions cannot. Small 
regions on the dendrite where a strong nonlinear boosting of synaptic currents occurs 
are sometimes called dendritic ’hot spots’. The boosting can lead to dendritic spikes 
which, in contrast to normal somatic action potentials last for tens of milliseconds.
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Extracting the Nonlinearity from Data! Consider:

In order to determine the function f~(u), an experimentalist injects a time-dependent current I(t) into the soma of a neuron while 
measuring with a second electrode the voltage u(t). From the voltage time course, one finds the voltage derivative du/dt.

For each voltage u there are many data points. 
At the end, we average across all points at a given voltage u to find the empirical function

General integrate-and-fire model 
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How to choose f(u)?
u is the membrane potential
f(u) is a nonlinear function of u
τ is the membrane time constant 
R(u) is the resistance
I is an external current

t(f) is a firing time
θreset is the firing threshold

For example, Exponential Integrate-and-Fire Model:

u is the membrane potential
urest is the resting potential
τ is the membrane time constant 
ΔT is a “sharpness” parameter
ϑrh is a threshold
R(u) is the resistance
I is an external current
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Exponential integrate-and-fire model
u is the membrane potential
urest is the resting potential
τ is the membrane time constant 
ΔT is a “sharpness” parameter
ϑrh is a threshold
R(u) is the resistance
I is an external current

The function f(u) is plotted for different choices of the ’sharpness’ of the threshold (ΔT = 1,  
0.5,  0.25,  0.05 mV) In the limit ΔT → 0 the EIF model becomes equivalent to LIF model (dashed line). 
The inset shows a zoom onto the threshold region (dotted box).
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Exponential integrate-and-fire model
u is the membrane potential
urest is the resting potential
τ is the membrane time constant 
ΔT is a “sharpness” parameter
ϑrh is a threshold
R(u) is the resistance
I is an external current

Cortical pyramidal cells. 

L. Badel, S. Lefort, T.K. Berger, C. Petersen, W. Gerstner and M.J.E. Richardson (2008) Extracting non-linear integrate-and-fire models from 
experimental data using dynamic i-v curves. Biological Cybernetics 99 (4-5), pp. 361–370. 

Extracting nonlinear integrate-and-fire models from data. The function f(u) characterizing the nonlinearity of an IF-model is 
derived from experimental data using random current injection into neurons. 

Inhibitory interneurons
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u is the membrane potential
f(u) is a nonlinear function of u
τ is the membrane time constant 
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t(f) is a firing time
θreset is the firing threshold
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Quadratic integrate-and-fire model
u is the membrane potential
uc is the critical voltage for spike            
     initiation by a short current pulse
τ is the membrane time constant 
R(u) is the resistance
I is an external current

The quadratic integrate-and-fire model (dashed line), 
compared to an exponential integrate-and-fire model 
(solid line):



Comparing QIF and EIF models

Repetitive firing in Nonlinear integrate-and-fire. 
Left: Exponential Integrate-and-Fire Model and 
Right Quadratic Integrate-and-Fire Model receiving a constant current sufficient to elicit repetitive firing. 

Note the comparatively slow upswing of the action potential in the quadratic integrate-and-fire model. 
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Advantages and disadvantages of IF models

● LIF model is rather limited in scope, since it has one universal voltage threshold. 
● Nonlinear integrate-and-fire neurons, however, can account for the fact that in real neurons the effective voltage threshold for repetitive firing 

is different than the voltage threshold found with short current pulses. 
● Once the membrane potential is above the intrinsic threshold, the upswing of the membrane potential starts. The integration is stopped at a 

numerical threshold θreset which is much higher and conceptually very different than the intrinsic firing threshold of the model. In fact, the 
exact value of the numerical threshold does not matter, since, without such a threshold, the membrane potential would go to infinity in finite 
time.

● EIF model has the ‘correct’ nonlinearity
● QIF model is too nonlinear in the subthreshold regime and too slow in the superthreshold regime.
● IF-models show a frequency-current curve of type I.
● IF-models are very easy to implement and compute 
● QIF model is used in the construction of the mean field reduction (population activity)
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Synaptic connections in neural ensembles

Main types: 

● electrical; 
● chemical. 

Classification by effect on the postsynaptic membrane: 

● excitatory: depolarized post-synaptic membrane; 
● inhibitory: hyperpolarized post-synaptic membrane. 

Cell attachment types:

● Axodendritic: the most common synapse in the human body.
● Axosomatic: connects to the cell membrane of the body or soma of another cell.
● Axo-axonic: usually, these are inhibitory synapses.
● Dendro-dendritic: these are dendritic connections between two different neurons.
● Neuromuscular: these types of synapses are highly specialised. Usually, these are large synapses that convert the electrical impulses in the 

motor neuron into the electrical activity that causes muscle contractions. All neuromuscular junctions use acetylcholine as a neurotransmitter.
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Graph theory
Introduction



Seven Bridges of Königsberg



Seven Bridges of Königsberg

The problem is to devise a walk 
through the city that would cross each 

of those bridges once and only once.



1. Construct a graph:



1. Construct a graph:

2. Define 

○ Euler path (trail) as a path that uses every edge of a graph exactly once. 
○ Define Euler circuit as a circuit that uses every edge of a graph exactly once.
○ Vertex degree is a number edges with that vertex as an end-point



1. Construct a graph:

2. Define 

○ Euler path (trail) as a path that uses every edge of a graph exactly once. 
○ Define Euler circuit as a circuit that uses every edge of a graph exactly once.
○ Vertex degree is a number edges with that vertex as an end-point



1. Construct a graph:

2. Define 

○ Euler path (trail) as a path that uses every edge of a graph exactly once. 
○ Define Euler circuit as a circuit that uses every edge of a graph exactly once.
○ Vertex degree is a number edges with that vertex as an end-point

An Euler path: BBADCDEBC



1. Construct a graph:

2. Define 

○ Euler path (trail) as a path that uses every edge of a graph exactly once. 
○ Define Euler circuit as a circuit that uses every edge of a graph exactly once.
○ Vertex degree is a number edges with that vertex as an end-point

An Euler path: BBADCDEBC Another Euler path: CDCBBADEB



1. Construct a graph:

2. Define 

○ Euler path (trail) as a path that uses every edge of a graph exactly once. 
○ Define Euler circuit as a circuit that uses every edge of a graph exactly once.
○ Vertex degree is a number edges with that vertex as an end-point

An Euler path: BBADCDEBC Another Euler path: CDCBBADEB An Euler circuit: CDCBBADEBC



1. Construct a graph:

2. Define 

○ Euler path (trail) as a path that uses every edge of a graph exactly once. 
○ Define Euler circuit as a circuit that uses every edge of a graph exactly once.
○ Vertex degree is a number edges with that vertex as an end-point

3. Euler’s theorem: 

★ If a graph G has an Euler path, then it must have exactly two odd vertices. 
★ If a graph G has an Euler circuit, then all of its vertices must be even vertices.

An Euler path: BBADCDEBC Another Euler path: CDCBBADEB An Euler circuit: CDCBBADEBC



Glossary
➔ Simple graph



Glossary
➔ Simple graph

➔ General graph may have loops

Loop is an edge 
from some 

vertex to itself



Glossary
➔ Simple graph

➔ General graph may have loops

➔ Directed graph

Loop is an edge 
from some 

vertex to itself



Glossary
➔ Simple graph

➔ General graph may have loops

➔ Directed graph

➔ Adjacency:

Loop is an edge 
from some 

vertex to itself
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Glossary
➔ Weighted graph := graph which edges 

are associated with some numbers 

➔ Dynamic graph := weighted graph 
where weight can change during time

Structural connectome:
Nodes := brain regions
Edges := synaptic path between  regions
Weights := Maybe synaptic strength

It is a weighted or unweighted static graph!

Functional connectome:
Nodes := brain regions
Edges := Partial synchronization between regions
Weights := Correlation of signals

It is a weighted dynamic graph!  



Base classification
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Topologies
➔ Null graph and fully connected graph

➔ Cycle graph, path and wheel

➔ Regular graphs (each vertex has the same degree)



Topologies
➔ Tree – connected graph 

without cycles

➔ Random graphs

◆ Erdos-Renyi, 

◆ Barabash-Albert (Scale free), 

◆ Watts-Strogatz (Small world)
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Topologies
➔ Tree – connected graph with 

only one path between each 
pair of vertices

➔ Random graphs
◆ Erdos-Renyi, 

◆ Barabash-Albert (Scale free), 

◆ Watts-Strogatz (Small world)

Important property: Heavily linked nodes ("hubs") tend to quickly accumulate even more links, while 
nodes with only a few links are unlikely to be chosen as the destination for a new link. The new nodes 
have a "preference" to attach themselves to the already heavily linked nodes.

http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/ERRG/AddoneEdgepATime.html


Topologies
➔ Tree – connected graph with 

only one path between each 
pair of vertices

➔ Random graphs
◆ Erdos-Renyi, 

◆ Barabash-Albert (Scale free), 

◆ Watts-Strogatz (Small world)

Human brain structural and 
functional networks follow 
small-world configuration.

http://www.networkpages.nl/CustomMedia/Animations/RandomGraph/ERRG/AddoneEdgepATime.html
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Graph presentation
➔ Diagram
➔ List of edges: 

[(1, 2), (2, 3), (3, 4), (1, 4), (2, 4), (2, 4)]

➔ Adjacency and incident matrices:

size(A) = (#v, #v)
Aij = #e between vi and vj 

size(M) = (#v, #e)
Mij = 1 if ej from vi exist 
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➔ Adjacency and incident matrices:

size(A) = (#v, #v)
Aij = #e between vi and vj 

size(M) = (#v, #e)
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Graph presentation: your turn!
➔ Diagram
➔ List of edges: [(1, 5), (1, 2), (2, 5), (4, 5), (2, 3), (3, 4), (3, 4)]
➔ Adjacency and incident matrices:



Laplacian matrix

L = D - A,

L := Laplacian matrix
D := degree matrix
A := adjacency matrix



Eigenvalues



Graph characteristics
1. Connected components 

subgraphs where any two vertices are 
connected by paths, and which are connected to 
no additional vertices in the rest of the graph

Number of connected 
components equals to the 
number of eigenvalues = 0 in the 
Laplacian matrix



Graph characteristics
2. Algebraic connectivity 

● reflects how well connected the overall graph is 
● how easy this network goes to synchronization (!)

We can calculate it as the 
second-smallest eigenvalue 
of the Laplacian matrix 

Alg. connectivity = 0.238

Alg. connectivity = 0.925



Graph characteristics
3. Maximum eigenvalue of adjacency 
matrix 

● a measure of how small changes to the graph 
structure influence flows on the graph,

● defines the transition to synchronization,  
● important in percolation on directed networks

http://mdpi.com/2076-3425/10/2/92/htm


Graph characteristics
3. Maximum eigenvalue of adjacency 
matrix 

● a measure of how small changes to the graph 
structure influence flows on the graph,

● defines the transition to synchronization,  
● important in percolation on directed networks

https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B0%D0%BA%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D1%80%D0%B0%D1%81%D0%BA%D1%80%D0%B0%D1%81%D0%BA%D0%B8_%D0%B3%D1%80%D0%B0%D1%84%D0%BE%D0%B2
http://mdpi.com/2076-3425/10/2/92/htm


Graph characteristics
4. Transitivity 

the relative number of triangles, compared to 
the number of triades

represent How dense the network is



Graph characteristics
5. Average clustering measure of the 
degree to which nodes in a graph tend to 
cluster together

a proportion of the number of links between the 
vertices within its neighbourhood divided by the 
number of links that could possibly exist between 
them.



Graph characteristics
1. Connected components subgraphs where any two vertices are connected by paths, 

and which is connected to no additional vertices in the rest of the graph

2. Algebraic connectivity reflects how well connected the overall graph is

3. Maximum eigenvalue of adjacency matrix a measure of how small changes to the 
graph structure influence flows on the graph

4. Transitivity the relative number of triangles, compared to the number of triades

5. Average clustering measure of the degree to which nodes in a graph tend to cluster 
together

6. Chromatic number measure of criticality



Popular problems and algorithms 



Popular problems and algorithms 
➔ Shortest path problem: 

◆ Dijkstra’s algorithm, 
◆ Bellman–Ford algorithm

➔ Travelling salesman problem: 
◆ Exact algorithms, 
◆ Nearest neighbour algorithm (greedy algorithms), 
◆ Ant colony optimization 
◆ etc.



Graph theory for neuroscience





Let’s practice!


